


FAVA: 300L

I01TTERBY, CALIFORNIA 93943-6008





UAVAI
MONTE











NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
CERENKOV RADIATION: TIME DEPENDENT

B FIELD OVER A FINITE PATH

by

Kathleen Marie Lyman

June 1986

Th.ssis Advisor: John R. Neighbours

Approved for public release; distribution is unlimited

T231312





Qrv classification of this PAGE

REPORT DOCUMENTATION PAGE

fPORT SECURITY CLASSIFICATION

Ciclassif ied
1b RESTRICTIVE MARKINGS

CURlTY CLASSIFICATION AUTHORITY

^CLASSIFICATION / DOWNGRADING SCHEDULE

"(FORMING ORGANIZATION REPORT NUMBER(S)

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distri
bution is unlimited

5 MONITORING ORGANIZATION REPORT NUMBER(S)

'AME OF PERFORMING ORGANIZATION

;/al Postgraduate School
6b OFFICE SYMBOL

(If applicable)

33

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

)DRESS (City. State. andZIPCode)

bnterey, California 93943-5100

7b ADDRESS (Ory, State, and ZIP Code)

Monterey, California 93943-5100

I4ME OF FUNDING /SPONSORING
RGANlZATlON

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

DDRESS(C/fy, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

ITIE (Include Security Clarification)

erenkov Radiation: Time Dependent B Field Over a Finite Path

ERSONAi AUTHOR(S)

Kathleen M. Lyman
TYPE OF REPORT

ters Thesis
13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month. Day)

1986, June
15 PAGE COUNT

85

UPPIEMENTARY NOTATION

COSATi CODES

;ld GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Cerenkov Radiation, Magnetic Field, Finite Path,
Time

8STRACT (Continue on reverse if necess< and identify by block number) _, . n . , .

This preliminary study mvesti-
ed the magnetic field radiated from a passing charge bunch traveling over
inite path. Beginning with the, infinite path case for a ramp front
.rge distribution, limits were derived to solve for the magnetic radiation
:ld over a finite path. Radiation pulses were computed and graphed for

y different positions of an observer with respect to the beam line,
tparisons of results show that the similarity in pulse shapes does not
iend exclusively on the observer's position with respect to the Cerenkov
rion, but also on certain time conditions in each case.

>'S:rti3UTiON/AVAILABlLlTY OF ABSTRACT

^UNCLASSIFIED/UNLIMITED O SAME AS RPT DTiC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
NAME OF RESPONSIBLE INDIVIDUAL

rohn R. Neighbours
22b TELEPHONE (Include Area Code)

(408)646-2922
22c OFFICE SYMBOL

6lNb
a? ADO &r{ , r ,r, n miu hfl , .

< a ,-1
i aihai c * ari



Approved for public release; distribution is unlimited

Cerenkov Radiation: Time Dependent B Field
Over a Finite Path

by

Kathleen Marie Lyman
Lieutenant Commander, United States Navy

B.A., Fordham University, 1970
M.S.T., Fordham University, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1986



ABSTRACT

This preliminary study investigated the magnetic field

radiated from a passing charge bunch traveling over a

finite path. Beginning with the infinite path case for a

ramp front charge distribution, limits were derived to

solve for the magnetic radiation field over a finite path.

Radiation pulses were computed and graphed for many

different positions of an observer with respect to the beam

line. Comparisons of results show that the similarity in

pulse shapes does not depend exclusively on the observer's

position with respect to the Cerenkov region, but also on

certain time conditions in each case.
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I. INTRODUCTION

A. HISTORY

Observations of a bluish-white light near a strong

radioactive source had been recorded by workers before this

phenomenon was understood. This was during a time (circa

1910) when the electromagnetic theory of light was well

known and there was increased study in the area of optics

and luminesence. The study of phosphoresence and

fluoresence dominated, and the discovery of Cerenkov

radiation was postponed due to the complexity of these

forms of luminesence and the fact that Cerenkov radiation

was weak in comparison. However, eventually the work on

Cerenkov radiation developed, and was brought about through

the study of phosphoresence and fluoresence. [Ref . 1 : p.l]

In 1926, Mallet took the first steps to study this

phenomenon. He discovered that when a transparent material

is placed near a strong radioactive source, the same

bluish-white light would be emitted in a wide variety of

cases. This light spectrum was continuous and did not

contain the line spectrum characteristics of fluoresence.

He also discovered that it differed in other respects from

other forms of luminesence. The study of the phenomenon was

not pursued again until 1934, when Cerenkov began a series

of experiments which lasted until 1938. During this same

time, Frank and Tamm proposed their theory (1937); there



was excellent correlation between this theory and

Cerenkov's experimental results. [Ref . 1 : pp. 1-2]

Research in this area continued and with the

development of the photomultiplier , the study in this area

became more active. [Ref.l: p. 2]

B. CERENKOV EFFECT

If a fast moving electron passes through a transparent

medium, the atoms around the electron will become distorted

and polarized. If the speed of the electron approaches

that of light in the medium, then the polarization field is

not symmetric. Symmetry is preserved in the azimuthal

plane, "but along the axis there is a resultant dipole

field which will be apparent even at large distances from

the track of the electron." [Ref.l: p. 4] Because of this

field, each element along the electron track will radiate a

brief electromagnetic pulse. [Ref.l: p. 4]

Generally, these radiated wavelets from all parts of

the track will interfere destructively and there will be no

resultant field. However, if the particle velocity is

higher than the phase velocity of light in the medium, the

wavelets will be in phase and there will be a resultant

field at a distant point of observation. This is observed

only at a particular angle 9 with respect to the particle

path. [Ref.l: p. 5]

Figure 1 [Ref.l: p. 5] illustrates the coherence of the



wavelets formed from points Pi , P2 , and P3 . If (I co is the

particle velocity, where co is the speed of light in a

vacuum and n is the index of refraction and A r is time,

then AB = (ft co ) (A r ) . the distance traveled by the particle,

and AC = (co/nM^r), the distance traveled by light. Thus,

we can obtain cos 6 = 1/Yln, which is called the "Cerenkov

relation". [Ref.l: p. 5]

There exists a threshold velocity, determined by the

relation ftmin = (1/n), and below this, no radiation is

emitted. When radiation is emitted, it occurs in the

visible and the near visible. [Ref.l'- p. 5-6]

Figure 1. Huygens construction to illustrate coherence

Much of the research in Cerenkov radiation has been



limited to the optical regions, these being favored over the

microwave region. The results from the optical radiation

are expressed in terms of Fourier components for both the

fields and the radiated power. [Ref.2: p.. 3750]

Since all the electrons in an accelerator bunch radiate

coherently, microwave radiation can be important. The time

structure of the fields formed by electron bunches that are

radiated coherently was investigated by Professors

Neighbours and Buskirk of the Naval Postgraduate School in

their published paper of 1985. [Ref.2: p. 3750]



II. THEORY AND OBJECTIVES

A. MAGNETIC RADIATION FIELD

Neighbours and Buskirk proceeded by determining the

potential from the moving charge distribution and then

obtaining the B field (in cgs units) from the potential by

B = ^X A (1)

The charge density function ~Pv and the current density jv=

/3v/co (v, the velocity, is in the positive z direction)

have been assumed and concentrated along the z-axis so that

(r,t) = f(z,t)i(x)*(y) (2)^v(r,t) = P

Since the charge is assumed to move with constant shape,

the z and t dependence of the charge is

Az,t) = ^o(z-vt) (3)

where -Ko and ~P are charge per unit length. [Ref.2: p.

3750]

The potential A is found to be

A(r,t) = ( v/co ) (r-i -Ar',t)dz (4)



where R = r-r' and t = t- |r-r|/c (the retarded time) and c

is the speed of light in the medium. [Ref.2: p. 3750]

Equation (3) can be used in the potential equation and,

defining a new variable u(z) = z-vt, with v defined as the

particle velocity, A can be written as

A(r,t) = (v/co ) \R-i -/o(u)dz (5)

The function u(z) can be written as

u(z') = z'-vt+(v/c) [x2+y2+( z - z')2 ]l/2 (6)

since the motion of the charge is confined to the z axis.

[Ref.2: pp. 3750-3751]

Because A has only a z component, the B field,

calculated from (1), has only x and y components; thus Bx =

3( Az ) / ^ y and By = - ~d(kz)/Qx. Considering the x component

only,

Bx =(v/co ) W^R-i /<3y){o (uldz + (v/co ) I R- l (o^ (u)/^y)dz (7)

At large distances, the first integral can be neglected

s ; °ce it will fall off as R" 2
. Then the x-component of the

B field can be written as

Bx = (v2/cco ) (~(y/R2 ) -Po (u)dz' (8)

10



where -r o(u) is the derivative with respect to u

Similarly, the y-component can be written as

By - (v2/cco) ( (-x/R2 )^o(u)dz (9)

Combining these two components and using cylindrical

coordinates, (s,9,z) where s = (x 2 +y2)i/2
] the magnitude of

total magnetic field, B, is written as

B = (vVcco) \ (s/R2 ) -fo (u)dz (10)f(s/R2) A

and occurs in the direction of © , i.e. tangential. [Ref.2:

p. 3751]

A similar derivation can be made in order to find the

magnitude of the E field. It is also true that, in the

Cerenkov case, E/B = c/co , which, for plane waves, is the

usual relation between the electric and magnetic fields.

[Ref.2: p. 3752]

B. TIME DEVELOPMENT

Considering the function u(z), as described in equation

(6), we can determine that the first two terms of the

equation are a straight line in the u-z' plane and the last

term is a hyperbola which opens in the positive u direction

and has asymtotic slopes of 1 t (v/c). The straight line

part of this function has a unit slope and a time dependent

11



intercept. The combination of these two curves results in

the curve u(z'). Figure 2 [Ref.2: p. 3751] indicates what

this curve would look like for the Cerenkov case with v>c.

The time indicated in Figure 2 increases from ti to t3 . The

curve will move downward with increasing time due to the

negative second term of equation (6). [Ref.2: p. 3751]

The contribution to the B fields of equation (10) is

due to changing currents (where -ro is nonzero). A ramp

front current pulse, for example, will have a derivative

which is a constant square valued pulse whose magnitude is

i

Pin. This pulse is depicted in the right side of Figure 2.

Only the positive pulse is considered. [Ref.2: p. 3751]

U

U

PJ

Figure 2. Function u = z-vt

For this example, the function u(z') will be above the

nonzero portion of Vo for large negative times, and for

12



small positive times. During these periods, ~P o will be

zero and therefore, the B field will be zero. When u(z')

becomes tangent to the upper part of the -Po pulse, namely

ui , then there is a nonzero contribution made by ~Po to

the B field and it becomes nonzero. The magnitude of the B

field will continue to increase until u(z') is tangent to

the lower part of -Po , called U2 in Figure 2. At later

times the integral splits into two parts, and since ^o is

constant, the B field will decrease. This is due to the

fact that the u function is turned upward and the area

under the curve will decrease. [Ref.2: p. 3751]

C. OBJECTIVES

The objective of this thesis is to solve for the

magnitude of the B field over a finite path. In order to do

this, the limits of integration for equation (10) must be

found and a computer program written to solve the integral

and graph the magnitude of the B field, for various

situations. For this calculation, time begins at zero,

when the beam is fired.

13



III. EQUATION DEVELOPMENT

The derivation of equations in this chapter is based

upon unpublished and untitled notes by Professor J.R.

Neighbours

.

A. CALCULATING THE B FIELD

Equation (10) can be written with finite limits of

integration as

B = (v2/cco) I (sR-2 ) £>o (u)dz (11)

If v2 /ceo = nft 2 and -to ( u )
~ 7 m ~ constant, then equation

(11) becomes

B = n/J2sA R"2dz (12)

where s = (x2+y2)i/2 and R2 - s 2 + (z-z') 2 or R2 - s 2 +w2
,

where w - z-z'. Substituting the variable w into equation

(12) and integrating with respect to w, the solution

becomes

*

B = n/*2 ^mCtan-i (wi/s)-tan-i (w2/s) (13)

where wi = z-zi and W2 = z-z£ . Thus, the problem is to find

the values of wi and w2

.

14



B. CALCULATING THE LIMITS OF INTEGRATION

1 . Situations Encountered For The Finite Path

There are three basic situations encountered in

this study of the B field and each depends upon the

position of the observer in relation to the Cerenkov angle,

8c. Figures 3, 4, and 5 illustrate the three different

situations. In each of these figures, the beam length is

L, and the point, P(z,s), is the position of the observer.

The three situations can be related to the position

of the minimum of the function u(z'), i.e. , the path can be

to the right, left, or centered about the minimum. If

v/c=rt , and substituting the value of s, equation (6) can be

written as

u(z) = z - vt - (j'[s2+(z-z)2 ]i/2 (14)

This function has a minimum at tan 9c = ± s/(z-z);

therefore, the minimum occurs on the Cerenkov cone when z-z'

is such that 8 = 8c .

The criterion for the path to be to the right is

that 8i in Figure 3 must be greater than 8c ; for the path

to be to the left, 82 in Figure 4 must be less than 8c ; for

the path to be centered about the minimum, 81 must be less

than 8c and 82 must be greater than or equal to 8c , as

shown in Figure 5

.

15



P(Z.S)

Figure 3. Path To The Right

16



P(Z,S)

Figure 4. Path To The Left

Figure 5. Path Centered About The Minimum

17



The rectangle in the u-z plane (Figure 6) is formed

by the path length, L, and the limits on the ramp function,

ui and u2 ; the corners are labeled ABCD.

a. Path To The Right

The relationship between the path and the

minimum of u(z') is shown in Figure 6. The B field will be

encountered first at time Ta and will go to zero again at

time Td . The limits of integration for the curve, as it

passes through the rectangle bounded by Ta , Tb , Tc , and To,

are the points of intersection of the curve and the

rectangle

.

U(Z')

u

u

Figure 6. Relation of u(z') to Path to the Right

For the path to the right, as well as the other

two cases, the values of these boundary times are found by

solving equation (14), having substituted the appropriate

values of z' and u(z'). The results are

18



Ta = [fl(s2+ z 2)i/2 - ui ]/v (15)

TB = [ri'(s2+z2 )1 /2 - U2]/V (16)

Tc = [L + (i'(s2 +
( 2 -L)2 )1 /2 - ui]/v (17)

Td = [L + (J

/

(s2+( 2 -L)2 )1 /2 - U2]/V (18)

The case illustrated in Figure 6 is one in

which Tc is greater than Tb . The condition for this case

to occur is that ui -u2 < L + fi'[ ( s2 + ( z-L)2 )l /2

(s 2 +z 2 )i/2]. There are two other cases, namely, when Tc is

less than Tb and Tc is equal to Tb . The derivation of the

equations for the limits of integration for the first case

will be described; the equations for the last two cases are

found in a similar manner.

Suppose Ta<T<Tb and u(z) is positioned at time

T as illustrated in Figure 7a. The lower limit of

integration for equation (12), z'i , is zero in this case and

BZ' = L'D

U

u

Figure 7a. Tc^Tb: Ta<T<Tb

zf is found by solving equation (14). If z.-^i , u(z/
)=ui ,

and a new variable, Ai = ui +vt , is introduced, the

solution of this quadratic equation becomes

19



Zf = {(^Z-Al )V[( 2 -Al )2- S2 (^2-l)]l/2}/(flf2-l) (19)

Only the positive solution for the quadratic equation is

valid because of the position of the minimum for the path

to the right.

The last two situations for the Tc >Tb case are

Tb<T<Tc and Tc<T<Td, which are illustrated in Figures 7b

and 7c, respectively. For these last two situations, a new

variable, A2 , is used and defined as u2 + vt . After

solving equation (14) for the lower and upper integral

limits, we find that for Tb<T<Tc

Zi = {(fl'2 2-Aa )+fl'[(z-A2 )2- S 2 (r&'2-l)]l/2}/(fj'2-l) (20)

and z'f is calculated by using equation (19). For Tc<T<Td,

z'i is found by using equation (20) and zf = L.

As mentioned previously, there are two more

cases for the path to the right, where Tc<Tb and Tc=Tb. For

the case of Tc <Tb , the condition is that

Ul -U2 >L+fl'[(s2+(z-L)2 )l/2-( S2+ z2 )l/2
]

and for Tc =Tb

Ul -U2=L+rt'[(s2+(z-L)2 )l/2-( s2+ 2 2 )l/2
]

Figures 8 and 9 illustrate the last two cases for the path

to the right.

The limits of integration for these last cases

are found in the same way as for the first case. A summary

20



u

u2

Figure 7b. ToTb : Tb<T<Tc

8
* 2f L

Figure 7c. ToTb : Tc<T<Td

21



u

(J

Figure 8. Path To The Right: Tc<Tb
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u

u.

Figure 9. Path To The Right: Tc=Tb
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of the limits of integration for the path to the right is

listed in Table 1, where

a = {((3*2-A2 )+fl'[(z-Al )2- S 2 (tf'2-l)]l/2}/((i'2-l)

and

b = {(r>'2 2 -A 2 )+/;'[ (Z-A2 )2- S 2 (fi'2-l)]l/2 } / ( ri'2 - 1 ) .

TABLE 1

LIMITS OF INTEGRATION: PATH TO THE RIGHT

Tc>Tb: Ta<T<Tb Tb<T<Tc Tc<T<Td
z'i

z'f a

z'f a

zi

z'f a

b
a

Tc<Tb: Ta<T<Tc Tc<T<Tb

Tb = Tc : Ta < T < Tb Tb < T < Td
b
L

b
L

Tb<T<Td
b
L

b. Path To The Left

The relationship between the minimum of u(z

and the path is shown in Figure 10.

U(Z')

Figure 10. Relation of u(z') to Path to the Left

24



The limits of integration for the path to the

left are found in the same manner as in the path to the

right. However, due to the position of the minimum with

respect to the path, only the negative part of the

quadratic solution will be used. The three cases for the

path to the left are summarised in Table 2; the conditions

for each are included.

TABLE 2

CASES AND CONDITIONS FOR THE PATH TO THE LEFT

Cases Conditions
TA>TD Ul -U2 <fl'[ (S2 + Z 2 )l/2-( S2+( 2 -L)2 )1 /2 ] - L
TA<TD Ul -U2 >f/[ (s2+z2)l/2-( s 2+( z -L)2)l/2]-L
TA=TD Ul -U2=P/[ (s2+ 2 2 )l/2-( s 2+( 2 -L)2 )1 /2 ]-L

These cases are shown in Figures 11a, b, and c;

the limits of integration are listed in Table 3 with

aa = {(fi'2 z -Ai) - (i'[(z-Ai)2 - s 2 (£2 -i ) ] }/(02 -1

)

a nd

bb = {(C^Z-A2) ~ rj'[(Z"A2)2 - S 2 (fi'2-l )] }/ffj'2-l

TABLE 3

LIMITS OF INTEGRATION: PATH TO THE LEFT

TA<TD :

Zi

Zf

Ta>Td :

Tc <T<Ta
aa
L

Tc <T<Td

Ta<T<Td

L
Td<T<Ta

Td<T<Tb

bb
Ta <T<Tb

t

Zi

Zf

Ta=Td :

aa
L

Tc<T<Ta

aa
bb

Td<T<Tb
bb

#

Zi

Zf

aa
L bb



Figure 11a. Path To The Left: Ta>Td

Figure lib. Path To The Left: Ta <Td

26



Figure lie. Path To The Left: Ta=Td

27



c. Centered About The Minimum

This case is slightly different from the first

two, as can be seen in Figure 12. The minimum occurs

between and L at zc , so that as shown in Figure 5, the

position of the observer makes the Cerenkov angle with

respect to the direction of the beam. For this case, new

U(Z')

Figure 12. Centered About the Minimum

times must be introduced: Ti , when the minimum just

contacts the ui line, T2 , when the minimum contacts the u2

line and T3 , the final time. Calculating the times from

equation (14), we find that the results are

Ti = {zc + ft'[s2 + (z-z'c)2]i/2 - ui }/v

T2 = {Zc + n'[s2 + (Z-Zc)2]l/2 - U2}/V

and T3 will be the larger of the Tb or Td , as previously

defined in equations (16) and (18), respectively.

28



Considering the situation where Ti <T<T2 , as

shown in Figure 13, it can be seen that both solutions to

the quadratic equation may be utilised, such that

Z+ = {(rt'2 z -Al) +fi'[(z-Al)2 - S2(fl'2-l)]l/2}/(0'2-l) (21)

and

Z'_ - {(r/2 Z -Al) - ri'[(Z-Al)2 - S 2 (f-i'2 -l)]l/2}/(ri'2-l (22)

z'

Figure 13. Ti <T<T2

With these two solutions, the following conditions, listed

in Table 4, are imposed in order to choose the proper

limits of integration.

29



TABLE 4

CONDITIONS FOR THE LIMITS OF INTEGRATION: Ti <T<T2

Condition zi z'f

z_<0
zL>0
z'+>L

z+ <L

/

z

z +

For the last case, T2 <T<T3 , there are two

integrals to solve, as shown in Figure 14.

z\m t (Up)

Figure 14. T2 <T<T3

30



For the first integral, z_(ui ) is found by

using equation (22) and

Z+(U2) = {P/2 2-A2 )-fj'[(2-Al )2- S 2 (ri'2-l)]l/2 }/(fi'2-l ) (23)

In this case z'f will always be z'_ (U2 ) . However, z'i will

equal z^_(ui ) when the latter value is greater than zero;

otherwise, zi will equal zero.

Similarly, the limits for the second integral,

z+(ui) and z+ ( u2 ) will be the corresponding solutions to

the above equations in which the second term is positive.

In this case, zi will always be z+(u2), whereas zf will

equal z+(ui ) if the latter is less than L, otherwise z'f

will equal L.

The total B field will be the sum of these two

integrals

.

Table 5 lists a summary of the limits of

integration for the path centered about the minimum.

TAELE 5

LIMITS OF INTEGRATION:. PATH CENTERED ABOUT THE MINIMUM

z'_ < z'_ > z'+ > L z'+ < L

Ti <T<T2
z'i z'_

< r '

zf L z +

T2 <T<T3
FIRST INTEGRAL:

z'i z'_

z'f = Z_{ U2 )

SECOND INTEGRAL:
Zi = Z+ ( U2 )

z'f L z'+ ( ui )

31



C . SUMMARY

In each of the above situations, if the values for zi

and zf are substituted into the equations for wi and w2

,

respectively, the limits of integration can be calculated

and used to solve equation (13), the magnitude of the B

field.

32



IV. CALCULATIONS AND ANALYSIS

A. CALCULATIONS

Having derived the formaulas for the limits of

integration, the next step was to write a computer program

to calculate the B fields and graph it against time.

The FORTRAN program is interactive and has a variable

input for the values of ui , u2 , ft, n, -Fm , s, z and L. The

values for the first five quantities were chosed to be:

ui =100 cm, u2=50 cm, ft = .99, n=l. 111111 and -Pm-\ . Various

values for s, z and L were used.

Based on the input, this program will choose what type

of situation is occurring, whether right, left or center.

It will calculate the B field during the time the u(z)

curve transits the rectangle in the u-z plane, and will

graph B vs time(nsec).

The graphics part of this program is based on a code

written by Professor J.R. Neighbours for use on a

Textronix computer; the main part of the program is an

original work.

Calculations were carried out for various beam lengths,

using different values for s; numerous values of z were

used and the corresponding B field graphs were obtained.

After studying these curves, a beam length of 1500 was

chosen with s values of 1500 and 3000. Graphs for selected
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values of z were compared; these graphs are shown in

Figures 20 through 42, found in Appendix A.

B. MINIMUM TIME

In analyzing the three situations, the minimum time

taken for the radiation to reach the observer was

determined. Figure 15 shows the situation which will be

used to find the time in each of the three cases.

PCZ.S)

/<//

^^//

/ fr

o 71 L L

Figure 15. Path of Beam and Radiation (z and R)

The beam emerges a"- and travels to L at constant

velocity v, where v = (I co . Radiation is emitted when the

head of the beam is at z'. The radiation then travels at

a constant velocity, c, to the observer at P.

The time it will take the radiation to reach the

observer is given by

t(z) = z/(Gco ) + (nR)/c (24)

Since R2 =(z-z) 2
, equation 24 can be written as
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t(z') = z'/flco ) + n/co )[(z-z')2 + s2]i/2 (24a)

As can be seen in Figure 16, there is a minimum time

for the path centered about the minimum.. It occurs at the

point zc (at the Cerenkov angle, ©c . The values used in

this case are z=4000, L=1500 and s=1500. This graph

verifies the following calculation for the minimum time

occuring at the Cerenkov angle.

dt/dz' = 1/tfco + (1/2) (n/co )[(z-z)2 + s 2 ]- l /2 2 ( z-z)

= 1/fico + (n/co )[ (z-z) /R]

= 1/tfco + (n/co)cos e =

This equation will equal zero when the value of cos 6 is

1/ntf ; this implies that © = 9c

.

Figures 17 and 18 show that there is not minimum time

over the length of the beam, L=1500, for the paths to the

right and left.

Although this analysis confirms that the minimum occurs

at the Cerenkov angle, there is no correlation between the

time in Figures 17, 18 and 19, and the time in the B field

radiation graphs. The problem stems from the fact that Ta

through Td depend on the values of ui and u2 , and Tc and Td

also depend on L, while equation (24) depends on neither of

these quantities.
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Figure 16: Centered About the Minimum
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PATH TO THE RIGHT
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PATH TO THE LEFT
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Figure 18: Path to the Left: No Minimum Time
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C. ANALYSIS OF THE B FIELD GRAPHS

In analyizing the B field graphs, it was decided to

look for similar characteristics and shapes. In this

analysis two cases were considered, each with L=1500; the

comparison was made between the graphs for s=3000 and

s=1500.

Figure 19 is a graph of s/L vs z/L. This graph

indicates the boundary regions for time, i.e., line #1 is

Tc=Tb, and line #2 is Ta=Td; these values are based on a Au

of 50 cm and the ratio Au/L =.03333, where A u=ui -U2 . The

time region to the left of line #1 is Tc>Tb, and the region

to the right of line #2 is Ta>Td. The region between line

#1 and #2 contains the times Tc <Tb and Ta<Td. The graph

also indicates the Cerenkov region, the area between the

dashed lines. The regions labeled RIGHT, CENTER and LEFT

correspond to the position of the observer as previously

described. The boundary lines between these regions are

the dashed lines. Each of the B fields graphs can be

placed in different time regions as indicated in Figure 19.

Figures 20 through 28 are all graphs of the path to the

right for which Tc>Tb; these graphs lie to the left of line

#1 and are indicated by the symbol x in Figure 19. Figures

20 through 26 are for s=1500, while Figures 27 and 28 are

for s=3000. Comparing these graphs, it can be seen that

there is a similarity in shape; as the z value gets closer

to the Cerenkov region, for each s case, the initial peak
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increases in magnitude. This is expected, since the

radiation should be greatest in the Cerenkov region. The

duration of the pulse decreases as z gets farther from the

source (L=0); also, it is first seen at a later time.

Figures 29 through 34 (29-31: s=1500; 32-34: s=3000)

show the B field in the Cerenkov region. The

characteristics of the curves shown in Figures 30 through

34 are such that the field increases, levels off and

decreases; there are no distinctive peaks. However, Figure

29 shows characteristics of the path to the right, where

Tc>Tb, and z is close to the Cerenkov region. Although this

curve falls into the Cerenkov region, it is also in the

time region for Tc >Tb , to the left of line #1 and is

indicated by the symbol x in Figure 19. Its shape is

dependent on the relationship between Tc and Tb . The other

graphs in the Cerenkov region fall in the time regions

Tc<Tb and Ta<Td, between lines #1 and #2. These are

indicated by the symbol O in Figure 19. Other examples of

the shape being dependent on the time region are shown in

Figures 35 and 36, which, indicate a B field for the path to

the right and path to the left, respectively. The shape of

these curves is very similar to that of the graphs in the

Cerenkov region between lines #1 and #2. The field in

Figure 35 falls into the time region Tc<Tb and the field in

Figure 36 falls into the time region Ta<Td. Both of these

cases are indicated by the symbol O in Figure 19, since they
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fall between line #1 and #2. Thus it would seem that the

placement of each case in relation to the time boundaries

is very important in determining the shape of the B field

curve.

Figure 37 (path to the left) shows a field which is

extremely close to the time boundary Ta =Td . Because this

is almost on the boundary, the flat part of the curve is

just coming to a point. The other graphs for the path to

the left (Figures 38 through 42) show characteristics

similar to those of the path to the right. For these

graphs, there is an initial peak and then the field falls

off; again the magnitude is greater closer to the Cerenkov

region. The first time the field is seen increases as z

increases; however, unlike the path to the right, the

duration of the field increases slightly as z increases.

This increase in duration would be expected since, in the

path to the left, the beam is coming toward the observer

and not traveling away. Figures 38 through 42 all fall to

the right of line #2, and are indicated by the symbol Q in

Figure 19.

The curves in Figures 20 through 29 all fall in the

time region Tc >Tb . There are four distinct points in these

curves: the initial and final points, with two

intermediate points. In each of these cases, the points

correspond to Ta , Tb , Tc and Td , in that order. This

indicates that the initial rapid increase in the field is
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due to the u function traveling through the distance £u.

This same thing occurs in Figures 38 through 42, in which

the time region is Ta>Td. However, these points correspond

to Tc , Td , Ta and Tb , the case for the path to the left.

Figures 30 through 33, show B fields for cases which

fall well within the Cerenkov region. In each of these

cases, there are six distinct points: the initial and

final points, with four intermediate points. In Figure 30,

for example, these points correspond to Ti , Ta , Tc , T2 , Tb

and T3=Td. Figure 34 . shows only four distinct points,

corresponding to Tc , Ta , Td and Tb . This case is almost on

the boundary for the Cerenkov region; it shows the four

points corresponding to the path to the left, with Ta<Td,

rather than the six points for the center case.

43



V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

From this preliminary study, it would seem that the

shape of the B field is determined by its placement within

a time region, rather than exclusively by the position of

the minimum, i.e.
,

path to the right, left or centered

about the minimum. In Figure 19, the boundary line #1 and

#2 are the cutoffs xor determining the characteristic

shapes of the B field graphs. Between these two lines, the

graphs show a period during which the radiation levels off.

On either side of these lines, there is a radiation peak

and the field falls off to a secondary peak and then

continues to zero. When the study was undertaken, it was

expected that the cutoff for characteristic shapes would be

the position of the observer in relation to the Cerenkov

region. Since the ime regions play such an important

role, it would be simpler to study the radiation fields

from graphs similar to that in Figure 19.

The maximum value of the B field, for a given s and L,

is found to be in the path centered about the minimum, i.e.

,

in the Cerenkov region.

The duration of the pulse decreases throughout the

path to the right and well into the Cerenkov region. This

is due to the fact that the beam is traveling away from the

observer. For situations occurring close to the boundary
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of the Cerenkov region and the path to the left, and

continuing into the region for the path to the left, the

duration of the pulse increases slightly. For these cases,

the beam is traveling toward the observer.

In each case studied, as z increases, i.e., as the

observer gets farther from the source, the pulse first

appears at a later time.

It is difficult to predict the characteristics of a

curve whose z value falls on or close to a boundary line

(Figure 19), whether that be a time or path boundary.

These characteristics include shape, flat topped or peaked,

and the number of distinct points on the curve.

In analyzing graphs for different values of Au/L, it

was determined that as Au/L gets very small, i.e., equals

0.0001, all the time lines coincide. This would mean that

all the graphs would have a peaked shape and the flat top

curves would disappear, since there would be no region

between the time line boundaries.

B. RECOMMENDATIONS

Since the shape of the B field curve is so closely

related to the time regions in Figure 19, it is recommended

that several other values of Au be used for analysis,

along with different values for s, the vertical coordinate

of the observer's position, P(z,s), in the z-s plane, and

for L, the beam length.
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It is also recommended that some universal time scale

be found to use in graphing the radiation fields. For this

study, each graph begins at a different time, the time the

u curve begins to transit the rectangle in the u-z plane.

If each graph indicates the same time scale, it would be

easier to conduct an analysis and comparison of the

radiation fields.

Since there was a problem in correlating the minimum

time with the B field graphs, it is recommended that

further study be conducted in this area

In order to make it easier to study the graphs for the

case centered about the minimum, it is recommended that the

program Fields (Appendix B) be changed so that the print

out of the graphs indicate the relationship between Ta and

Td , and Tb and Tc . Also, a listing of all the appropriate

boundary times in each case would be valuable.
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APPENDIX A

FIGURES: B FIELD CURVES
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Figure 20: s=1500, 2=1; Tc >Tb
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Figure 21: s=1500, z = 500; ToTb
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Figure 26: s=1500, z = 3000; ToTb
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APPENDIX B

FORTRAN PROGRAM: FIELDS

C****** PROGRAM FIELDS *******

C****** THIS PROGRAM WILL CALCULATE THE FIELDS FROM A
PASSING CHARGE BUNCH. IT WAS WRITTEN BY LCDR
KATHLEEN M. LYMAN, USN; THE GRAPHICS PORTION OF THE
PROGRAM IS BASED ON CODE WRITTEN BY PROF. J.R.
NEIGHBOURS OF THE NAVAL POSTGRADUATE SCHOOL.

REAL N . Ul , U2 , BETA , CO , ROE , A , G , CE , V , BPRME , Rl , R2 , Al
REAL A2 , D , E , DD , EE , Q , TA , TB , TC , TD , F , ZPI , ZPF , WPI , WPF
REAL Wl , W2 , ZC , RC , ZPC , Tl , T2 , T3 , DELR, ZPM, ZPM2 , Bl , B2
REAL El , E2 , SI , XX , YY , S , L , Z , TPRME , B , BMAX , TMAX , XMAX
REAL SDYY , SDXX , SCALEY , SCALEX , SDX , SDY , SN , YN , YMIN , X ,

Y

REAL YMAX , XM'IN , TMIN , GPRME , THETA1 , THETA2
DIMENSION TPRME( 9000 ) ,B( 9000)
INTEGER I, J, JXMAX, JYMAX, IMAX
CHARACTER* 1 AXCH , PRE
CHARACTER*6 PATH
CHARACTER*8 TIME

300 WRITE(6,2000)
2000 FORMAT (

' Ul = ' ,$)
READ(5,*)U1
WRITE(6,2001)

2001 FORMAT (
' U2 = ' ,$)

READ(5,*)U2
WRITE(6,2005)

200 5 FORMAT ('BETA = ',$)
READ (5,*) BETA
WRITE(6,2007)

2007 FORMAT (
' N = ' ,$)

READ(5,*)N
WRITE(6,2009)

2009 FORMAT (
' ROE = ' ,$)

READ(5,*)ROE

C****** INITIAL VALUES ********
DO 900 I = 1,9000
TPRME(I) =0.0

900 CONTINUE

DO 910 I = 1,9000
B(I) = 0.0

910 CONTINUE
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TMAX=0 .

TMIN=0/0
IMAX=0
BMAX=0. 00000000
00=29.997250

C****** CALCULATE THE VELOCITY V AND BETA PRIME (BPRME)
V=BETA*C0
BPRME=N*BETA

Q=BPRME**2. -1

.

C****** CALCULATE THE CERENKOV ANGLE ( CE ) ******
CE = ACOS(l /BPRME)
F = TAN(CE)

WRITE(6, 1002)
1002 FORMAT (' ENTER S VALUE FOR GRAPH ',$)

READ(5,*)S

WRITE(6,1003)
1003 FORMAT (' ENTER L VALUE FOR GRAPH ',$)

READ(5,*)L

WRITE(6, 1004)
1004 FORMAT( 'ENTER Z VALUE FOR GRAPH ',$)

Rl = SQRT(S**2. +Z**2.

)

R2 = SQRT(S**2. +(Z-L)**2.

)

SI = (S**2. )*Q

C****** CALCULATE THE BOUNDARY TIMES *******
TA = (BPRME*R1-U1)/V
WRITE(6,3013)TA

3013 FORMAT( 'TA: ' ,4X,F9.4)

TB = (BPRME*R1-U2)/V
WRITE(6,3014)TB

'

3014 FORMAT( 'TB: ' ,4X,F9.4)

TC = (L+(BPRME*R2)-U1)/V
WRITE(6,3015)TC

3015 FORMAT ( 'TC: ' .4X.F9.4)

TD = (L+(BPRME*R2)-U2)/V
WRITE(6,3016)TD

3016 FORMAT ( 'TD: ' .4X.F9.4)
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C****** CALULATE THE VALUE OF TAN(THETA 1),(A), AND
C****** THE VALUE OF TAN(THETA 2),(G)

A=S/Z
IF(Z.LT.L)GO TO 500
IF(Z.EQ.L)GO TO 501
G=S/(Z-L)
GO TO 502

C****** COMPARISON TO DETERMINE ON WHICH SIDE THE MINIMUM
C****** LIES
500 GPRME=ATAN( (L-Z)/S)+90.

THETA1=ATAN(A)
THETA2=ATAN(GPRME)
IF(THETA1.GT.CE)G0 TO 10
IF(THETA2.GE.CE)GO TO 15
GO TO 20

501 GPRME=90.
THETA1=ATAN(A)
IF(THETA1.GT.CE)G0 TO 10
GO TO 15

502 IF(A.GT.F)GO TO 10
IF(G.GE.F)GO TO 15
GO TO 20

C****** PATH TO THE RIGHT *******

10 WRITE(6,2050)
2050 FORMAT ('PATH TO THE RIGHT')

PATH=' RIGHT'
TMIN=TA

303 DO 701 1=1,9000
TPRME(I)=TA+(REAL(I) )/100.
IF(TPREM(I) .GE.TD)GO TO 800

TMAX=MAX ( TMAX , TPRME ( I )

)

IMAX=MAX(IMAX,I)

A1=U1+V*TPRME(I)

)

A2=U2+(V*TPRME(I)

)

D=( (BPRME**2. )*Z)-A1
DD= ( ( BPRME**2

.
) *Z ) -A2

El=( (Z-A1)**2. )-Sl
E2=( (Z-A2)**2. )-Sl

IF(TC.GT.TB)GO TO 25
IF(TC.LT.TB)GO TO 30
IF(TC.EQ.TB)GO TO 35
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C****** TC > TB: CALCULATION OF LIMITS OF INTEGRATION
25 TIME='TC >TB'

IF( (TA.LT.TPRME(I) ) .AND. (TPRME(I) .LT.TB) )GO TO 26
IF( (TB.LT.TPRME(I) ) .AND. (TPRME(I)

.

LT.TC) )GO TO 27
IF( (TC.LT.TPRME(I) ) .AND. (TRPME(I) .LT.TD) )GO TO 28

C****** TA <T' <TB
26 ZPI=0.

IF(E1.LT.0. )GO TO 200
E=BPRME*SQRT(E1)
ZPF=(D+E)/Q
IF(ZPF.LT.O. )GO TO 303
GO TO 101

C****** TB<T'<TC
27 IF(E1.LT.0. )GO TO 200

E=BPRME*SQRT(E1)
IF(E2.LT.O. )GO TO 220
EE=BPRME*SQRT(E2)
ZPI=(DD+EE)/Q
ZPF=(D+E)/Q
IF(ZPI.LT.O. )GO TO 303
IF(ZPF.LE.O. )GO TO 303
GO TO 101

C****** TC<T'<TD
28 IF(E2.LT.O. )GO TO 220

EE=BPRME*SQRT(E2)
ZPI=(DD+EE)/Q
ZPF=L
IF(ZPI.LT.O. )GO TO 303
GO TO 101

C****** TC < TB: CALCULATION OF LIMITS OF INTEGRATION
30 TIME='TC < TB'

IF((TA.LT.TPRME(I)).AND. (TPRME(I) .LT.TC) )GO TO
IF((TC.LT.TPRME(I)) .AND. (TPRME(I) .LT.TB) ) GO TO
IF( (TC.LT.TPRME(I) ) .AND. (TPRME(I) .LT.TD) ) GO TO

C****** TA<T'<TC
31 ZPI=0

IF(E1.LT.0. )GO TO 200
E=BPRME*SQRT(E1)
ZPF=(D+E)/Q
IF(ZPF.LT.O. )GO TO 303
GO TO 101

31
32
33

V^f ^p ^h ^P *^ ^n ^n

32
TC<T' <TB
ZPI=0.
ZPF=L
GO TO 101
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C****** TB<T' <TD
33 IF(E2.LT.O. )G0 TO 220

EE=BPRME*SQRT(E2)
ZPI=(DD+EE)/Q
ZPF=L
IF(ZPI.LT.O. )GO TO 303
GO TO 101

C****** TC = TB: CALCULATION OF LIMITS OF INTEGRATION
35 TIME='TC = TB'

IF( (TA.LT.TPRME(I) ) .AND. (TPRME(I) . LT.TB) )GO TO 36
IF( (TB.LT.TPRME(I) ) .AND. (TPRME(I) .LT.TD) )GO TO 37

C****** TA<T' <TB
36 ZPI=0.

IF(E1.LT.0. )GO TO 200
E=BPRME*SQRT(E1)
ZPF=(D+E)/Q
IF(ZPF.LT.0. )GO TO 303
GO TO 101

C****** TB<T' <TD
37 IF(E2.LT.O. )GO TO 220

EE=BPRME*SQRT(E2)
ZPI=(DD+EE)/Q
ZPF=L
IF(ZPF.LT.O. )GO TO 303
GO TO 101

C****** CALCULATION OF THE FIELD
101 WPI=Z-ZPI

WPF=Z-ZPF
W1=WPI/S
W2=WPF/S
YY=ATAN(W1)
XX=ATAN(W2)
B ( I ) = ( ROE*N* ( BETA**2 ) ) * ( YY-XX

)

BMAX=MAX(BMAX,B(I)

)

701 CONTINUE
GO TO 800

C****** PATH CENTERED ABOUT THE MINIMUM ******
15 WRITE(6,2051)
2051 FORMAT ( 'CENTER'

)

PATH=' CENTER'
ZPC=Z-(S/F)
RC = SQRT(S**2.+( (Z-ZPC)**2. ) )

C****** CALCUATION OF Tl AND T2
T1=(ZPC+(BPRME*RC)-U1)/V
T2= ( ZPC + ( BPRME*RC ) -U2 ) /V
DELR=R1-R2

74



WRITE(6,6000)T1
6000 FORMAT( 'Tl= ' , F9 . 4

)

WRITE(6,6001)T2
6001 FORMAT ( 'T2= ' , F9 . 4

)

C****** DETERMINING THE VALUE OF T3

16

17

18
6002

IF( (BPRME*DELR)
IF( (BPRME*DELR)
T3 = TB

T3 = TB'
18

GT
LE

L)GO
L)GO

TO
TO

16
17

TIME =

GO TO
T3=TD
TIME = T3 = TD'
WRITE(6,6002)T3
FORMAT ( 'T3= ' , F9 . 4

)

TMIN=T1
DO 702 1=1,9000
TPRME(I)=T1+(REAL(I))/100.
IF(TPRME(I).GE.T3)GO TO 800
TMAX=MAX ( TMAX , TPRME ( I )

)

IMAX=MAX(IMAX,I)

IF((T1.LT.TPRME(I) )

IF( (T2.LT.TPRME(I) )

AND. (TPRME(I)

.

LT.T2) )GO TO 60
AND. (TPRME(I) .LT.T3))GO TO 70

^^ *^ *r ^^ ^p ^p ^n

60

61
62
63

64

CALCULATION OF LIMITS
A1=U1+(V*TPRME(I))
A2=U2+(V*TPRME(I)

)

D=( (BPRME**2. )*Z)-A1
DD= ( ( BPRME**2 .

) *Z ) -A2
E1=((Z-A1)**2. )-Sl
E2=( (Z-A2)**2. )-Sl

IF(E1.LT.0. )GO TO 200
E=BPRME*SQRT(E1)
ZPM=(D-E)/Q
ZPF=(D+E)/Q
IF(ZPM.LE.0. )GO TO 61
IF(ZPM.GT.0. )GO TO 62
ZPM=0

.

ZPI=ZPM
IF(ZPF.GE.L)GO TO 64
IF(ZPF.GT.L)GO TO 110
ZPF=L

OF INTEGRATION (TKT'<T2)

C****** CALCULATION OF THE FIELD
110 WPI=Z-ZPI

WPF=Z-ZPF
W1=WPI/S
W2=WPF/S
YY=ATAN(W1)
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XX=ATAN(W2)
B(I)=(R0E*N*(BETA**2. ) )*(YY-XX)
BMAX=MAX(BMAX,B(I)

)

GO TO 702

C****** CALCULATION OF LIMITS OF INTEGRATION (T2<T'<T3)

C****** FIRST INTEGRAL
70 A1=U1+(V*TPRME(I))

A2=U2+(V*TPRME(I>)
D=( (BPRME**2. )*Z)-A1
DD= ( ( BPRME**2 .

) *Z ) -A2
E1=((Z-A1**2. )-Sl
E2=( (Z-A2**2. )-Sl

IF(E1.LT.0. )GO TO 200
E=BPRME*SQRT(E1)
IF(E2.LT.O. )GO TO 220
EE=BPRME*SQRT(E2)
ZPM=(D-E)/Q
ZPM2=(DD-EE)/Q
IF(ZPM2.LE.O. )GO TO 73
IF(ZPM2.GT.O. )TO TO 74

73 ZPF=0.
GO TO 75

74 ZPF=ZPM2
75 IF(ZPM.LE.0)GO TO 71

IF(ZPM.GT.0)GO TO 72
71 ZPI=0.

GO TO 80
72 ZPI=ZPM

C****** CALCULATION OF THE FIELD FROM THE FIRST INTEGRAL
80 WPI=Z-ZPI

WPF=Z-ZPF
W1=WPI/S
W2=WPF/S
YY-ATAN(Wl)
XX=ATAN(W2)
Bl=(ROE*N*(BETA**2. ) )*(YY-XX)

C****** SECOND INTEGRAL
IF(E1.LT.0. )GO TO 200
E=BPRME*SQRT(E1)
IF(E2.LT.O. )GO TO 220
EE=BPRME*SQRT(E2)
ZPI=(DD+EE)/Q
ZPF=(D+E)/Q
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IF(ZPI.GE.L)GO TO 83
GO TO 84

83 ZPI=L
84 IF(ZPF.GE.L)GO TO 82

IF(ZPF.LT.L)GO TO 81
82 ZPF=L

C****** CALCULATION OF THE FIELD FROM THE SECOND INTEGRAL
81 WPI=Z-ZPI

WPF=Z-ZPF
W1=WPI/S
W2=WPF/S
YY=ATAN(W1)
XX=ATAN(W2)
B2=(ROE*N*(BETA**2. ) )*(YY-XX)

C****** TOTAL FIELD
B(I)=B1+B2

BMAX=MAX(BMAX,B(I)

)

702 CONTINUE
GO TO 800

C****** PATH TO THE LEFT
20 WRITE(6,2052)
2052 FORMAT ('PATH TO THE LEFT')

PATH='LEFT'
TMIN=TC

304 DO 700 1=1,9000
TPRME ( I ) = ( TC+REAL ( I ) ) /l 00

.

IF TPRME(I) .GE.TB)GO TO 800
TMAX=MAX ( TMAX , TPRME ( I )

)

IMAX=MAX(IMAX,I)

A1=U1+(V*TPRME(I)

)

A2=U2+(V*TPRME(I))
D=( (BRPME**2. )*Z)-A1
DD=( (BPRME**2. )*Z)-A2
E1=(Z-A1)**2.-S1
E2=(Z-A2)**2.-S1

IF(TA.LT.TD)GO TO 40
IF(TA.GT.TD)GO TO 45
IF(TA.EQ.TD)GO TO 50

C****** TA < TD: CALCULATION OF LIMITS OF INTEGRATION
40 TIME='TA < TD'

IF( (TC.LT.TPRME(I) ) .AND. (TPRME(I) .LT.TA) )GO TO 41
IF( (TA.LT.TPRME(I) ) .AND. (TPRME(I) .LT.TD) )GO TO 42
IF((TA.LT.TPRME(I)).AND. (TPRME(I) .LT.TB))GO TO 43

77



C****** TC<T' <TA
41 IF(El.LT.O. )GOTO 200

E=BPRME*SQRT(E1)
ZPM=(D-E)/Q
ZPF=L
ZPI=ZPM
IF(ZPI.LT.O. )GO TO 304
GO TO 100

C****** TA<T'<TD
42 ZPI=0.

ZPF=L
GO TO 100

C****** TA<T'<TB
43 ZPI=0.

IF(E2.LT.O. )GO TO 220
EE=BPRME*SQRT(E2)
ZPM2=(DD-EE)/Q
ZPF=ZPM2
IF(ZPF.LT.0. )GO TO 304
GO TO 100

C****** TA > TD: CALCULATION OF LIMITS OF INTEGRATION
45 TIME^'TA > TD'

IF( (TC.LT.TPRME(I)) .AND. (TPRME(I) .LT.TD) )GO TO 46
IF( (TD.LT.TPRME(I) ) .AND. (TPRME(I) .LT.TA) )GO TO 47
IF( (TA.LT.TPRME(I) ) .AND. (TPRME(I ) . LT.TB) )GO TO 48

C****** TC<T' <TD
46 IF(E1.LT.0. )GO TO 200

E=BPRME*SQRT(E1)
ZPM=(D-E)/Q
ZPF=L
ZPI=ZPM
IF(ZPI.LT.O. )GO TO 304
GO TO 100

C****** TD<T'<TA
47 IF(E1.LT.0. )GO TO 200

E=BPRME*SQRT(E1)
IF(E2.LT.O. )GO TO 220
EE=BPRME*SQRT(E2)
ZPM=(D-E)/Q
ZPM2=(DD-EE)/Q
ZPI=ZPM
ZPF=ZPM2
IF(ZPI.LT.O. )GO TO 304
IF(ZPF.LT.O. )GO TO 304
GO TO 100
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C****** TA<T' <TB
48 ZPI=0.

IF(E2.LT.O. )G0 TO 220
EE=BPRME*SQRT(E2)
ZPM2=(DD-EE)/Q
ZPF=ZPM2
IF(ZPF.LT.O. )GO TO 304
GO TO 100

C****** TA = TD: CALCULATION OF LIMITS OF INTEGRATION
50 TIME='TA = TD'

IF((TC.LT.TPRME(D) .AND. (TPRME(I) .LT.TA))GO TO 51
IF( (TD.LT.TPRME(I) ) .AND. (TPRME(I) .LT.TB) )GO TO 52

C****** TC<T' <TA
51 IF(E1.LT.0. )GO TO 200

E=BPRME*SQRT(E1)
ZPM=(D-E)/Q
ZPF=L
ZPI=ZPM
IF(ZPI.LT.O. )GO TO 304
GO TO 100

C****** TD<T'<TB
52 ZPI=0.

IF(E2.LT.0. )GO TO 220
EE=BPRME*SQRT(E2)
ZPM2=(DD-EE)/Q
ZPF=ZPM2
IF(ZPF.LT.O. )GO TO 304
GO TO 100

C****** CALCULATION OF THE FIELD
100 WPI=Z-ZPI

WPF=Z-ZPF
W1=WPI/S
W2=WPF/S
YY=ATAN(W1)
XX=ATAN(W2)
B(I)=(ROE*N*(BETA**2. ) )*(YY-XX)
BMAX=MAX(BMAX,B(I)

)

700 CONTINUE

200 WRITE (6, 201)
201 FORMAT (' VALUE OF El IS NEGATIVE. PROGRAM WILL BEGIN

AGAIN. '

)

GO TO 300

220 WRITE(6,221)
221 FORMAT (' VALUE OF E2 IS NEGATIVE. PROGRAM WILL BEGIN

AGAIN. '

)

GO TO 300
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C****** BEGIN GRAPHICS ************
C****** INPUT SCALING VALUES ******
800 WRITE(6, 1510)BMAX
1510 FORMAT(/'THE MAXIMUM VALUE OF B IS \F16.8)

WRITE(6, 1520)
1520 FORMAT(/' ENTER THE MAXIMUM HEIGHT ON THE B AXIS'. $)

READ(5,*)YMAX
WRITE(6,1530)

1530 FORMAT (/' ENTER THE B AXIS MARKING INCREMENT ',$)
READ(5,*)SDYY
CALL INETYPE(IPAT)
CALL COLORLIN(ICOLOR)

WRITE(6,1560)
1560 FORMATCDO YOU WANT INFORMATION PRINTED ALONGSIDE

THE GRAPH? ' ,$)
READ(5,1570)AXCH

A570 FORMAT (Al)

CALL INSTR1 '

PAUSE '#1'

XMAX=TMAX
XMIN=TMIN
SDXX= ( TMAX-TMIN ) /3 .

SCALEX=60.0/(XMAX-XMIN)
SDX=SDXX*SCALEX
XN= ( XMAX-XMIN ) /SDXX
JXMAX=INT(XN)

YMIN=0.0
SCALEY=80 . 0/( YMAX-YMIN)
SDY=SCALEY*SDYY
YN= ( YMAX-YMIN ) /SDYY
JYMAX=INT(YN)

C****** BEGIN TO PLOT ******
CALL GRSTRT(410 5, 1)
CALL NEWPAG
CALL VAXES
CALL VXMARK(JXMAX,SDX)
CALL VYMARK(JYMAX.SDY)

C****** PLOT GRAPH ******
CALL MOVE (18.0, 19.0)
CALL DASHPT(IPAT)
CALL LINCLR

DO 540 I=1,IMAX
C****** SCALING OF VALUES ******

X=18.0+60.0*( (TPRME(I)-TMIN)*100. )/IMAX
Y=19.0+80.0*B(I)/YMAX
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CALL DRAW(X.Y)
540 CONTINUE
C****** DECISION TO LABEL GRAPH ******

CALL GRSTOP
CALL INSTR2
PAUSE '#3'

CALL LINE
CALL INSTR1
PAUSE '#4'

CALL GRSTRT(410 5, 1)

CALL XLABEL(JXMAX,SDX,SDXX,XMIN)
CALL YLABEL(JYMAX,SDY,SDYY,YMIN)

C****** AXES LABELS AND PARAMETER LEGEND ******
IF(AXCH.EQ. 'Y' )GO TO 556
GO TO 651

556 CALL MOVE( 50.0, 10.0)
TXICUR(8)
TEXT(11, 'TIME (NSEC)' )

MOVE (5. 0,83.0)
TXICUR(3)

CALL
CALL
CALL
CALL
CALL TEXT(1, 'B' )

REL=REAL(L)
RES=REAL(S)
REZ=REAL(Z)
CALL MOVE (85. 0,95.0)
CALL TXICUR(l)
CALL TXFCUR(2)
CALL TEXT ( 1 5 ,

* BEAM LENGTH = ')

CALL RNUMBR(REL, 1,8)
CALL MOVE (85. 0,85.0)
CALL TEXT(15,

'

Z = '
)

CALL RNUMBR(REZ, 1,8)
CALL MOVE( 85. 0,75.0)
CALL TEXT (15,

'

S = '

)

CALL RNUMBR(RES, 1,8)
CALL MOVE (85. 0,65.0)
CALL TEXT (6, PATH)
CALL MOVE (85. 0,55.0)
CALL TEXT (8, TIME)

651 CALL GRSTOP
CALL INSTR2
PAUSE '#5'

GO TO 440

C****** DECISION TO PRINTOUT, RE-RUN, PLOT VALUES OR EXIT
440 WRITE(6,445)
44 5 FORMAT (//' 1: PRINTOUT VALUES'/' 2:

AGAIN'

)

RUN PROGRAM
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WRITE(6,450)
450 FORMAT ('3: PLOT VALUES'/' 4: EXIT '//' ENTER

CHOICE' ,$)
READ(5,460)PRE

460 FORMAT (Al)
IF(PRE.EQ. '4' )GO TO 301
IF(PRE.EQ. '3' )GO TO 800
IF(PRE.EQ. '2' )GO TO 300
IF(PRE.EQ. '

1' )GO TO 660
GO TO 440

C****** PRINT OUT VALUES ******
660 WRITE(6,670)
670 FORMAT (' TIME B'/28( '-')/)

DO 690 1=1, IMAX
WRITE(6,680)TPRME(I) ,B( I)

680 FORMAT(F16. 8,2X,F10.8)
690 CONTINUE

GO TO 440

301 END
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